M1.
$100(\%)-14(\%)$ or $86(\%)$
or $1-0.14$ or 0.86
Implied by 87 139(.5)
101325×0.86^{4}
oe
eg 101325×0.86 or $87139(.5)$
and their 87 139(.5) $\times 0.86$ or $74939(.97)$
and their $74939(.97) \times 0.86$ or $64448(.3742)$
and their $64448(.3742) \times 0.86$

55 425(...)
May be implied by 55000 or 55400 or 55430 or 55426
A1

55000
ft their answer rounded to 2sf
B1ft

M2.1800 $\times 1.04$ or 1872 oe
$1800 \times 1.04^{n}=2000$
1800×1.04^{2} or 1946.88 or 1946 or 1947 oe
Accept rounding [1946, 1947]
$2000 \div 1800=1.04^{n}$
1800×1.04^{3} or $2024.7 \ldots$ oe

Accept [2023, 2025]

Between 2 and 3 years

3
Must not come from simple interest

M3.Alternative Method 1

1.032 seen
5000×1.032^{3} oe
5495.523...
May be implied
5495.52 ft their answer rounded to $2 d p$

Alternative method 2

$5000+5000 \times 0.032$ or 5160 oe
their 5160 + their 5160×0.032
or 5325.12
and
their $5325.12+$ their 5325.12×0.032
5495.523...

May be implied
5495.52
ft their answer rounded to $2 d p$ SC1 5480
their 8571.(...) $\div 1.05$ (= 8163.(...))
their 8163.(..) $\div 1.05(=7774 .(\ldots))$
7774.54 or 7774.55 or 7775

Alternative method

1.05 seen oe

Two trials correctly evaluated of the form $n \times 1.05^{3}$ with second trial closer to $£ 9000$

Two trials correctly evaluated of the form $n \times 1.05^{3}$ with second trial closer to $£ 9000$ and

 both values of n in range [7700, 7800]M5.(a) $1(.0) \times 10^{-6}$
(b) 50000000000000
(c) $4^{3}=2^{6}$

$$
2^{10}=4^{5}
$$

their $2^{6} \times 2 \times 2 \times 2 \times 2$
$4^{5} \div 4 \div 4$
For this mark the correct number of 2s or 4s needed for their 2^{6} or their 4^{5}

SC1 answer only

Alternative method 1

64 and 128

Allow one arithmetical slip when multiplying by 2.
64, 128, 256, 512 and 1024Allow one arithmetical slip when multiplying by 2.
5
If one arithmetical slip then AO
SC1 answer only
Alternative method 2
64 and 1024M1$1024 \div 64=16$ oeM1
5
SC1 answer only

